2252

POSSIBILITY OF THE FORMATION OF MIXED CRYSTALS IN THE INDIUM PHOSPHATE-SCANDIUM PHOSPHATE SYSTEM

Bohumil HÁJEK, Eva ŠANTAVÁ and Alexander MUCK

Department of Inorganic Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6

Received December 30th, 1983

The powder X-ray diffraction patterns and vibrational spectra were studied for the InPO₄-ScPO₄ system. The two cations were found mutually partly replaceable in the two phosphate structures involved, D_{2h}^{17} and D_{4h}^{19} : the orthorhombic D_{2h}^{17} structure of InPO₄ is apt to accept 25 mol.% ScPO₄, whereas the tetragonal D_{4h}^{19} structure of ScPO₄ only accepts InPO₄ in amounts not exceeding 5 mol.%. The vibrational spectra of TIPO₄ are also investigated.

The ionic radii of \ln^{3+} and Sc^{3+} ions in crystals of their compounds, which lie in the region of 80-90 pm (refs¹⁻³), approach each other closely; due to the different electronic configuration, however, their coordination is different. The possibility of their mutual replacement is therefore studied in this work for two different phosphate structure types, *viz.* the orthorhombic D_{2h}^{17} -*Cmcm* structure for InPO₄ ($a = 530.8 \text{ pm}, b = 785.1 \text{ pm}, c = 676.7 \text{ pm}; Z = 4; \text{ refs}^{4.5}$) and the tetragonal $D_{4h}^{19}I4_1/amd$ structure for ScPO₄ (a = 657.4 pm, c = 579.1 pm; Z = 4;refs^{4.6.7}).

Interpreting the hitherto unpublished vibrational spectra of $InPO_4$ we found them better consistent with the initially considered⁵ structure C_{2v}^{12} ; for a comparison the vibrational spectra were therefore also interpreted for the isostructural TlPO₄ $(D_{2b}^{17}-Cmcm, a = 539.5 \text{ pm}, b = 801.0 \text{ pm}, c = 707.1 \text{ pm}, Z = 4; \text{ ref.}^5)$.

EXPERIMENTAL

The samples of indium and scandium phosphates and their mixed samples were prepared⁸⁻¹⁰ from the corresponding oxides (Lachema, Brno) and annealed at 800, 900, or 1 000°C. The water content of $InPO_4$ prepared at room temperature was determined by thermogravimetric and differential thermal analysis; the crystallization temperature of anhydrous indium phosphate¹⁰ was also verified. The data for scandium phosphate were taken from ref.¹¹.

Thallium phosphate was prepared from Tl_2O_3 (Merck, Darmstadt) by long-run dissolution in a fiftyfold excess of 85% H_3PO_4 p.a. (Tl_2O_3 dissolved in acids such as H_3PO_4 , HNO_3 , H_2SO_4 considerably more reluctantly than as reported in the literature^{12,13}). The clear sirup obtained was diluted with water, and the precipitated hydrate was decanted to weakly acid pH, filtered out, washed with diethyl ether, dried freely in air, and annealed at 200-280°C and 300-360°C.

TABLE I

Parameter InPO₄ ScPO₄ TIPO₄ 530.8(5) 657.8(2) 541.0(4) a, pm b, pm 796.9(6) 657.8(2) 801.3(6) 676.4(5) 579.5(2) 707.0(5) c, pm (P-O)PO4 distance, pm 2×153.8 4×153.4 2×156.2 2×156.1 2×155.8 4×252.2 $4 \times 256.9(2)^{a}$ 5×254.7 $(O - O)_{PO_4}$ distance, pm 254.4 $2 \times 237 \cdot 4(3)^{a}$ 254.6 254.8 4×219.2 $4 \times 215 \cdot 3(1)^a$ 2×202.5 M-O distance, pm 2×200.5 $4 \times 226 \cdot 0(1)^a$ 4×228.5 Coordination number of M^{3+} 8^a 6 6 Symmetry of the coordination dodecahedron distorted distorted octahedron C_{2v} (bisbisphenoid) D_{2d} octahedron C_2 MO, polyhedron Own symmetry of PO₄ anion C_{2v} T_{d} D_{2d}

Structural data of pure InPO₄, ScPO₄ and TlPO₄

^a Ref.⁷.

TABLE II

Composition of the samples studied

InPO ₄ content	Num diffra lin	ber of action es ^a	Substance	InPO ₄ content	Num diffra lin	ber of action acs ^a	Substance
	ScPO ₄	InPO ₄	• 		ScPO ₄	InPO ₄	
100	0	13	InPO ₄	30	6	10	с
95	0	12	Ь	25	7	5	с
90-75	0	11	ь	20	7	3	с
70	1	11	с	15	7	1 (?)	с
60	3	11	с	10	7	3	с
50	5	11	с	5	7	1	с
40	5	9	c	0	7	0	ScPO ₄

^{*a*} Number of mutually noncoincident lines within the region of $\Theta 2-25^{\circ}$; ^{*b*} mixed crystal with the InPO₄ structure; ^{*c*} mixed crystal + ScPO₄.

Collection Czechoslovak Chem. Commun. [Vol. 49] [1984]

The powder X-ray diffraction measurements over the region of $\theta = 2-35^{\circ}$ were performed on a Geigerflex instrument (Rigaku Denki) equipped with a Cu anode and a Ni filter. The infrared spectra over the $4\,000-200$ cm⁻¹ range were measured in KBr disks on a Perkin-Elmer 325 spectrophotometer. The Raman spectra of the powdered pure components were measured in the free state or in a capillary on a Jeol JRS S1 spectrometer using the 488 nm line of an Ar⁺ laser (power 15.5 mW), the Raman spectra of the powdered pure samples were also measured in a capillary on a Coderg LRDH-800 spectrometer using the 514.5 nm line of a CR-3 Ar⁺ laser of Coherent Radiation.

RESULTS AND DISCUSSION

According to the thermogravimetric and differential thermal analysis data, the water content of the freely dried indium phosphate precipitate corresponds to the formula InPO₄.x H₂O with x = 2.91. The single endothermic effect observed at $130-200^{\circ}$ C is due to the loss of all water, the single exothermic effect at 700°C arises from the crystallization of the anhydrous amorphous InPO₄. The scandium phosphate sample dried freely in air has a composition of ScPO₄.x H₂O with x = 3.2. The two exothermic effects at 800 and 830°C correspond to the crystallization¹¹ of ScPO₄. The lowest temperature of 800°C was therefore chosen for the sample preparation. Attempted DTA determination of the temperature of crystallization for thallium phosphate failed because of the too low temperature change involved. The bestdeveloped infrared spectra were obtained for samples annealed at 200-360°C; at $650-700^{\circ}$ C, melting and decomposition took place (endothermic effect).

T _d (24)	$C_{2v}(4)$	$D_{2h}(8) \ C_2 \rightarrow C_2^y$				
$v_1 A_1$	$A_1(\mathrm{IR},\mathrm{RA})$	$A_{g}(RA) + B_{2u}(IR)$				
$v_2 E$	$A_1(\mathrm{IR},\mathrm{RA}) + A_2(\mathrm{RA})$	$B_{2g}(\mathbf{RA}) + A_{u}(\mathbf{ia}) + A_{g}(\mathbf{RA}) + B_{2u}(\mathbf{IR})$				
$v_3, v_4 F_2$	$A_1(\text{IR, RA}) + B_1(\text{IR, RA}) +$	$A_{\mathbf{g}}(\mathbf{RA}) + B_{2\mathbf{u}}(\mathbf{IR}) + B_{3\mathbf{g}}(\mathbf{RA}) + B_{1\mathbf{u}}(\mathbf{IR}) +$				
	$+ B_2(IR, RA)$	$+ B_{1g}(\mathbf{RA}) + B_{3u}(\mathbf{IR})$				
T _d (24)	C _s (2)	C _{2v} (4)				
$v_1 A_1$	<i>A</i> ′(IR , R A)	$A_1(\text{IR, RA}) + B_1(\text{IR, RA})$				
v ₂ E	$A'(\mathrm{IR},\mathrm{RA}) + A''(\mathrm{IR},\mathrm{RA})$	$A_1(\text{IR}, \text{RA}) + B_1(\text{IR}, \text{RA}) + A_2(\text{ia}) + B_2(\text{IR}, \text{RA})$				
$v_3, v_4 F_2$	2A'(IR, RA) + A''(IR, RA)	$2A_1(\text{IR}, \text{RA}) + 2B_1(\text{IR}, \text{RA}) + A_2(\text{ia}) + B_2(\text{IR}, \text{RA})$				

Correlation table for the phosphate anion in the structures considered

Collection Czechoslovak Chem. Commun. [Vol. 49] [1984]

2254

TABLE III

The crystallographic data of the three phosphates were taken from refs⁴⁻⁷. The own symmetry of the anions was verified by calculating the $(O-O)_{PO_4}$ and $(P-O)_{PO_4}$ distances (Table I). The vibrational spectra of scandium phosphate have been interpreted previously^{14,15} in terms of the $T_d \rightarrow D_{2d} \rightarrow D_{4h}$ correlation. The activation of the v_1 vibration in the infrared spectrum of ScPO₄ is related with the lowering in the site symmetry of the anion to the effective site symmetry by the correlation¹⁶ $D_{2d} \rightarrow C_2$.

Collection Czechoslovak Chem. Commun. [Vol. 49] [1984]

InPO ₄ mol.%	v ₁		v_2 and lattice vibrations							
	980	960	408	338	317 and	305		264	238	
90	975 sh	960	412	338 sh	320 —	305	295 sh	285 sh	235	
70	980 —	950	410		325 —	305		280		
50	975 sh	955	420	360 —	325					
40	970 sh	955	420	360	330					
15		945	415	370	325			250		
10	965 sh	950 sh	415 sh	370	325					
0	990 sh		420 sh	365	315					
RA InPO₄	953	914	416	350	320		243	220	130	
IR TIPO ₄	985	950	375 sh	360	330	305	265 —	255	226	
$RATIPO_4$	920	895	400				255	205	143	
$RA ScPO_{4}$	1 026		333	32	24 sh		241	235 sh	185	

Wavenumbers (cm^{-1}) of the bands in the vibrational spectra of InPO₄, ScPO₄, their mixed

Annealed at 1 300°C, ScPO₄ exhibits values of 1 110, 1 080, 1 020 cm⁻¹ in the v_3 region. The Tl-O vibration in the spectra of TlPO₄ appears at 440 cm⁻¹.

X-Ray Diffraction Measurements

The lattice parameters of the pure substances (Table I) were calculated based on the indices of the most intense diffraction lines of the starting substances and the corresponding lines of the mixed samples, and refined by the least squares method employing the X RAY-72 program (University Computer Centre, Prague); the data are in accordance with the published values⁴⁻⁷. The lattice parameters of indium and scandium phosphates containing the cations in various proportions (Table II) are identical with those of the starting components to within the limits of error of powder X-ray diffraction measurements.

Samples containing 100-75 mol.% InPO₄ can be indexed as orthorhombic with the lattice parameters of InPO₄, the parameters being constant to within the experimental error. The patterns of the remaining samples except for pure ScPO₄ are superpositions of the diffraction lines of the orthorhombic and tetragonal structures, the lattice parameters of which are concentration-independent.

Infrared and Raman Spectra

The vibrational spectra of scandium phosphate have been interpreted previously¹⁴⁻¹⁶. Indium (or thallium) phosphate crystallizes in the space group D_{2h}^{17} -Cmcm: $C_1(16)$,

TABLE IV

Formation of Mixed Crystals in the Indium Phosphate-Scandium Phosphate System

v ₃				v ₄					
1 160 ai	nd 1 143	1 093	1 030	672 668	662 sh	655 sh	563	552	545
1 157 ai	nd 1 145 sh	1 100	1 027		662		560 sh	555	545
	1 140	1 080	1 025		660	560	550	525 sh	515 sł
	1 140	1 080	1 020		660		555	530	520
	1 1 50 -	1 075	1 015		660		555	530	520
	1 120	1 070 -	- 1 030		660		560		515
	1 1 1 0		1 035		660		560		515
	1 110 sh	1 070 -	- 1 010		650				510
1 165	1 145	1 050	1 028		665		550		430
		1 060	1 026		625		535		520
		1 095	1 000		650		530		
		1 082	1 043				593		473

In-O vibration at 475 cm⁻¹ appears in the spectra of samples with 100 - 20 mol.% InPO₄

 $2C_{2h}(4)$, $C_{2v}(4)$, $C_i(8)$, $C_2(8)$, $2C_s(8)$. The own symmetry of the anion is D_{2d} with the subgroups D_{2d} , S_4 , D_2 , C_{2v} , C_2 , C_s , C_1 , the number of formula units in an elementary cell is Z = 4, or $Z_p = 2$. Thus the corresponding site symmetry is unambiguously C_{2v} .

If the space group $C_{2v}^{12}:C_1(8)$, $C_s(4)$, also suggested⁷ for this substance, and the same own symmetry of the anion with Z = 4, or $Z_p = 2$, are considered, the site symmetry of the anion is $C_s \equiv S_1$. The correlation for the phosphate anion in these structure is as given in Table III.

The v_1 vibration at 950 cm⁻¹, appearing for samples containing InPO₄ in amounts of 15-100 mol.% and absent for pure ScPO₄, is indicative of mixed crystals of the InPO₄ structure. The X-ray diffraction patterns show the line of indium phosphate at its concentrations as low as 5 mol.%.

The infrared spectra of pure indium phosphate can be better interpreted in terms of the factor symmetry $C_{2\nu}$, as is clear from a comparison of the correlation table (Table III) with the experimental wavenumbers (Table IV, Fig. 1). Unique interpretation based on the approximation applicable to the isolated particles, however, is hampered by the partially covalent nature of the In—O bond. For thallium phosphate, the D_{2h} factor symmetry is appropriate.

Thanks are due to Dr B. Strauch, Department of Inorganic Chemistry, Charles University, Prague, for the Raman spectra measurements.

Collection Czechoslovak Chem. Commun. [Vol. 49] [1984]

REFERENCES

- 1. Bokii G. B.: Kristallokhimiya, p. 138. Nauka, Moscow 1971.
- 2. Shannon R. D. S., Prewith C. D.: Acta Crystallogr. B 26, 1046 (1970).
- 3. Pauling L. C.: The Nature of Chemical Bond, p. 514. Cornell University Press, Ithaca, N. Y., 1960.
- 4. Mooney R. C.L., Kissinger H., Perloff A.: Acta Crystallogr. 7, 642 (1954).
- 5. Mooney R. C. L.: Acta Crystallogr. 9, 113 (1956).
- 6. Mooney R. C. L.: Acta Crystallogr. 9, 677 (1956).
- 7. Milligan O., Mullica D. F.: Inorg. Chim. Acta 60, 39 (1982).
- 8. Enslin F., Dreyer H., Lessman O.: Z. Anorg. Chem. 254, 315 (1947).
- 9. Brownlow C. E. A., Salmon J. E., Wall J. G. L.: J. Chem. Soc. 1960, 2452.
- Deichman E. N., Tananaev I. V., Ezhova Zh. A., Kuzmina T. N.: Zh. Neorg. Khim. 13, 47 (1968).
- 11. Muck A., Petrů F.: Chem. Zvesti 20, 789 (1966).
- 12. Willm J. E.: Ann. Chim. Phys. 5, 66 (1865).
- 13. Meyer R. J.: Z. Anorg. Chem. 24, 322 (1900).
- 14. Petrů F., Muck A.: Z. Anorg. Allg. Chem. 352, 330 (1967).
- 15. Muck A., Petrů F.: Z. Anorg. Allg. Chem. 383, 104 (1971).
- 16. Muck A., Smrčková O., Hájek B.: This Journal 47, 1176 (1982).

Translated by P. Adámek.